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Abstract—In this paper, we propose Acies, a differential pri-
vacy based privacy-preserving classification system for edge
computing to secure the classification models offloaded to edge
devices. Acies supports popular classifiers such as Nearest
Neighborhood, Support Vector Machine and Sparse Repre-
sentation Classifier with a variety of feature selection methods.
According to our evaluation on different datasets, classification
models with Acies can be private and remain high utility. Acies
achieves reliable privacy protection under reconstruction at-
tacks with minimal impact on classification accuracy (2%−5%)
only. Acies outperforms the naive input dataset perturbation
methods by up to 30% higher classification accuracy when the
privacy requirements of the applications is high (ε is less than
2).

1. Introduction
Edge computing framework has been visioned and ap-

plied in many real-world applications like authenticating
query [1]. Comparing with traditional centralized cloud,
edge computing pushes application logic and the underlying
data to the edge of the network with the aim of reducing
latency, improving availability and scalability. Edge comput-
ing can ease the network reliance for real time applications,
for instance, the authenticating process. Besides, the care-
fully tuned trade-off between computing and communication
responsibilities between edge servers, trusted servers and
untrusted services can enlarge the fault-tolerance, churn,
elasticity and many others scale to millions of users, which
is more suitable for current IoTs environment. However, this
central-decentral shifting computing framework introduces
new threats on data privacy therefore it forces to enhance
the trust, privacy and autonomy requirements in computing
applications.

The privacy risk of edge computing. Technology
advances such as dedicated connection boxes deployed in
most homes, high capacity mobile end-user devices and
powerful wireless networks are always coupled closely with
concerns on trust, privacy, and autonomy. Edge comput-
ing introduces controlling of applications, users’ data, and
services away from central nodes (the “core”) to the other
logical extreme (the “edge”) of the Internet. Those out-of-
range controls make significant contribution to the efficiency
of edge computing, however, they also create new system
security threats.

Privacy-preserving solutions. In this paper, we focus
on the privacy leakage and the corresponding solutions for
Machine Learning (ML). The privacy-preserving solutions
designed for cloud computing cannot be directly migrated to
edge computing scenarios due to their difference in network
paradigm, i.e., the introduction of local (edge) servers. The
exisiting solutions for privacy-preserving in cloud comput-
ing considered the case that the data owner outsources
training of ML model which is computationally intensive to
professional cloud service providers without revealing the
privacy of data. However, considering the real deployment
circumstances of edge computing services, the edge servers
are not trusted. The threat from malicious users has not been
well addressed as it aims for more complex scenarios.

In this paper, we propose Acies1, based on differential
privacy mechanism, to address generic ML privacy problems
in the emerging edge computing scenarios.
Contribution. The contributions of this paper can be sum-
marised as followed:

• We study the new problem of privacy-preserving clas-
sification under new edge computing scenario. A new
threat model is proposed to analyze new issues brought
by the new computational paradigm.

• Acies applies differential privacy protection in the fea-
ture selection stage and can be smoothly incorporated
in most of the current classification services without
any changes on classification work flow and system
architecture.

• According to our extensive evaluation on multiple
datasets of different classification tasks, Acies achieves
reliable privacy protection against reconstruction at-
tacks with only minimal impact on classification accu-
racy (2%−5%) which, is significant (up to 30%) lower
than naive approaches by taking noise into account in
the ML model training stage instead of adding the noise
to the input data source directly.

2. Edge-based Classification

2.1. Characteristics and Constraints

Edge computing allows us to process data near the
source and only send few results over the network to an

1. Acies is a Latin word origin as sharp edge and vision.
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intermediate data processor, which can address unreliable
latency problem in traditional cloud-based computing. There
are couple of characteristics and constraints we need to
consider when design an edge computing systems.

Dimension reduction and feature extraction. Training
samples like features extracted from raw sensor recordings
are used to train a robust classifier. IoTs devices (edge
nodes) undertake some lightweight computing locally (we
focus on classification tasks in this paper) to avoid latency
caused by remote communication or network connection
interruption. However, considering the fact that IoTs de-
vices are resource-constrained, the complexity of trained ML
models should be reduced through dimensionality reduction
before being deployed on edge nodes. However, dimension-
ality reduction method should be carefully designed so that
the network latency can be addressed without noticeable
sacrifice on classification accuracy.

Kernel based classifiers. In this paper, we focus on the
classifiers that are widely adopted in IoTs applications such
as kNN, SVM and SRC [2]. All those classifiers can be
categorized as Kernel Logistic Regression models (KLR)
[3]. In KLR models, the kernel function retains (a tiny
fraction of) the training data (termed as “import points”)
which may result in the leakage of privacy of the training
data.

2.2. Threat Model

Different from traditional cloud computing threat model,
we assume that the cloud server is secure while the edge (in-
cluding edge servers and edge devices) is untrusted because
the edge is located closer to the clients and difficult to be
safeguarded physically like the Cloud. Furthermore, edge
devices such as smartphones and smart home gateways are
typically managed by clients without sophisticated cyberse-
curity knowledge to provide universal accessibilities, which
makes them significantly easier to be compromised by the
hackers.

We assume that users’ personal devices (edge) are not
compromised, otherwise the users are unlikely to adopt
an extra system to provide a privacy preserved service.
The classification model is trained on central server with
tailored ML algorithms. In order to provide better system
performance such as response time, the ML models are
offloaded to edge servers and/or devices. A curious user
or a malicious hacker may wish to obtain other user’s
private information. For example, Eve can access to the face
authentication model placed in their building’s edge server
and may be interested in other residents’ appearance.

2.3. Reconstruction Attack

To better illustrate the privacy issues of the edge comput-
ing based classification system we conduct some preliminary
experiments by launching reconstruction attacks on those
edge-based classifiers. We take the face recognition case as
a visualized example within the whole paper.

Algorithm 1 Input Data Perturbation

1: Input: Normal input data/feature X = {x1, x2, x3, ..., xn} ∈
R

n×m, target privacy budget ε, extraction ratio k;
2: Output: Perturbed extracted/compressed feature set A ;
3: Initialization: Calculate sensitivity s = maxX −minX;
4: For each xi ∈ X

5: Sample noise vector lp from Laplace(s/ε)
6: x′

i = xi + lp;
7: Computes the Singular Value Decomposition (SVD) of per-

turbed features transpose (X ′)T : (X ′)T = UΛV T ,
8: Choose the first k column of U as the extraction matrix R ∈

R
k×n,

9: Get A ∈ R
k×m by multiply the extraction matrix transpose

with perturbed input A = RT ×X ′.

The attack for popular feature selection algorithms such
as SVD, Eigenface and Fisherface is similar to those privacy
attacks reported in the literature [4]. For the benefit of space,
we omit the technical details.

Apart from face recognition authentication systems, an
adversary can launch similar reconstruction attacks to other
edge computing applications such as activity recognition.
For instance, gait information extracted from WiFi signal
like Channel State Information (CSI) can be used for human
identification [5]. We will use these IoTs application datasets
to evaluate the proposed algorithm later in Section 4.

3. Protections for Edge-based Classification

3.1. Input Data Perturbation

Inspired by differential privacy, a naive approach (as
shown in Algorithm 1) can be applied to protect privacy by
injecting random noises into classifiers’ training dataset. The
algorithm starts by initializing the sensitivity (Line 3 in Al-
gorithm 1) then the noise vector is computed and combined
with the chosen target privacy budget (Line 5). Selecting a
reasonable global sensitivity itself is another research ques-
tion which is beyond the scope of this paper. We adopted
the naive approach from the original definition. Readers can
refer to [6] for sensitivity methods like �2 − sensitivity
for vector-valued functions. In face recognition case, the
sensitivity is 255. According to the parallel composibility of
differential privacy [7], the entire dataset X is differential
private after processed by the algorithm. SVD is used as
a feature extraction example in the algorithm, though other
classifiers and feature extraction methods, such as Eigenface
and Fisherface, are also applicable here. The output of this
algorithm, i.e., A, then can be used for any ML classifiers
as the training set.

Figure 1 presents examples of reconstruction attack re-
sults on different feature extraction methods (from top to
bottom: Elgenface, Fisherface, SVD) under different rates of
noise (ε={8, 5, 2, ln2}) that are added in the training data. In
differential privacy, smaller ε provides higher privacy guar-
antee, however, it may leads to lower usability, i.e., lower
recognition accuracy. From the results shown in Figure 1
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Algorithm 2 Feature Extraction Perturbation

1: Input: Normal input data/feature X = {x1, x2, x3, ..., xn} ∈
R

n×m, target privacy budget ε, extraction ratio k;
2: Output: Perturbed extracted/compressed feature set A ;
3: Initialization: Computes the Singular Value Decomposition

(SVD) of perturbed features transpose (X)T : (X)T = UΛV T ;
4: Choose the first k column of U as the extraction matrix R ∈

R
k×n,

5: Calculate sensitivity s = maxR−minR,
6: For each ri ∈ R

7: Sample noise vector lp from Laplace(s/ε)
8: r′i = ri + lp;

9: Get A ∈ R
′k×m

by multiply the extraction matrix transpose
with perturbed input A = (R′)T ×X .

we can find that under small ε (such as ε=2 and ε=ln2), it
is hard to recognize the identities of the face images after
reconstruction attacks on the feature extraction methods of
SVD and Eigenface. However, the added noises also have a
huge impact on the recognition accuracy. In the literature,
ε=ln2 is typically considered as providing acceptable level
of privacy [8], but all ML algorithms lose their utility
because the recognition accuracy drops to approximately
30% for kNN and SRC and 50% for SVM respectively as
our evaluations in Section 4.4.

(a)

(b)

(c) raw image ε=8 ε=5 ε=2 ε=ln2

Figure 1: Face images reconstruction with different fea-
ture extraction methods after protection with Algorithm 1.
(a)SVD (b)Eigenface (c)Fisherface.

3.2. Acies - Feature Extraction Perturbation

To achieve high privacy guarantee while preserving ac-
ceptable utility of the classification model in edge com-
puting, we propose a new classification model perturbation
method Acies (Algorithm 2). The fundamental idea behind
is to perturb the tailored feature extraction methods, to con-
trol the information leakage from the training data indirectly.

Considering linear regression purpose, matrix R and X
from Algorithm 2 can be also regarded as two independent
linear models. Hence, the models of R and X then can be
written as σ = R(λ) and b = X(a), where λ and a are

different inputs to each model and σ and b are their cor-
responding outputs. Under the context of edge computing,
we mostly use the combined model (R(X(·))) to handle
the classification task, which refers to the feature selection
process followed by those classifiers. Regardless of various
classifiers, Acies takes linear transformation to generate the
R(X(·)), which equals to A in Algorithm 2.

We launch the reconstruction attacks to the features
perturbed by Acies and present some preliminary results
in Figure 2. The face images are the same to those used
in Figure 1. The results show that the identities of the face
images can be effectively protected when ε of R is equal
to or below 8 which demonstrates significantly improved
privacy preserving performance intuitively compared with
the results shown in Figure 1, i.e., Acies added significant
lower level of noise to provide reliable privacy protection
compared with the naive approach.

(a)

(b)

(c) raw image ε=25 ε=8 ε=5 ε=2 ε=ln2

Figure 2: Face images reconstruction with different fea-
ture extraction methods after protection with Algorithm 2.
(a)SVD (b)Eigenface (c)Fisherface.

4. Evaluation

4.1. Goals and Metrics

In this section, we will first illustrate how Acies affects
ML models’ utility by evaluating the recognition accuracy
of Acies with a number of IoTs aplpication datasets, which
include YaleB recognition (YaleB) [9] and WiFi Channel
State information (CSI) [5].

We then evaluate the performance of Acies on privacy
protection. We use mutual information [10] as our evaluation
metric, which measures the distance between the original
training instance and the estimation of the instance obtained
from reconstruction attacks. The mutual information of two
variables A and B can be computed using the probability
distributions,

I(A,B) =
∑

a,b

pAB(a, b)log
pAB(a, b)

pA(a) · pB(b) (1)
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where pA(a) and pB(b) are marginal probability distribution
and joint probability distribution pAB(a, b) are statistically
independent if pAB(a, b) = pA(a) · pB(b). When mutual
information of two variables I(A,B) = 0, it implies that A
and B are absolute independent. In the context of this paper,
smaller I(X, X̂) implies that X is better protected from
reconstruction attacks. To illustrate Acies only introduce
small system overhead to edge server/devices, we evaluate
the time consumption of different classification models.

4.2. Recognition Accuracy of Classification System
with Acies

YaleB We choose the first 32 face images from each
class as training dataset and the following 10 as testing.
300-dimensional feature vectors are extracted for different
classifiers. We compute the classification accuracy of the
two privacy protection methods over the 38 classes. The
averaging classification accuracy results are presented in
Figure 3.

Compared with the input data perturbation approach
shown on the left column of Figure 3, Acies (the right
column) achieves significantly higher recognition rate with
smaller ε. Acies has different impacts on different feature
extraction methods, for example, the accuracy of SVM with
Fishface drops to 7% (note that this data point is not shown
in Figure 3(d)) while for other feature extraction methods,
the change of ε has a less impact on accuracy.

CSI WiFi CSI data can be used to identify people based
on the unique gait information. One data record is generated
for a single person completing required activity. The raw
CSI data is collected from 20 people, and each activity
is repeated for 10 times. From the results (Figure 4) we
can see that Acies has very little impact on classification
accuracy for different values of privacy parameters ε.

In summary, Acies shows good performance on preserv-
ing the utility of different classification models with various
feature extraction methods on different real-world datasets
generally.

4.3. Privacy Analysis

In this section, we analyze the secrecy property of Acies
under reconstruction attacks. We quantify how much infor-
mation, in terms of mutual information, that an adversary
can obtain from the classification models by launching the
reconstruction attacks introduced in Section 2.3.

Figure 5 shows the normalized mutual information re-
vealed via launching reconstruction attacks on the classifi-
cation models perturbed by input data perturbation (Algo-
rithm 1) and Acies (Algorithm 2) respectively for all datasets
with 30% compression ratio. The results show that the
normalized mutual information degrades with the decrease
of ε (the amount of noise increases) for both methods as
expected. However, the normalized mutual information of
Acies drops significantly quicker than that of input perturba-
tion algorithm which implies that the performance of Acies

Table 1: Time consumption for classification process with
different extraction ratio

Time Consumption
Data Set/Time(s) YaleB CSI

5% 25% 100% 5% 25% 100%
kNN 0.006 0.01 0.02 0.05 0.13 0.71
SVM 0.9 1.1 1.2 0.32 0.36 1.87
SRC 0.3 0.67 1.58 0.3 0.9 2.3

on privacy protection is significantly better. For example,
when ε is 8, the mutual information of Acies is less than 0.2,
while that of input data perturbation is approximately 0.3.
We have also evaluated Acies and input data perturbation
using other compression ratios (e.g., 10% and 50%). The
results are similar to those in Figure 5, and the related plots
are omitted for the benefit of space.

4.4. Resource Consumption Analysis

To evaluate the resources consumption of the classifi-
cation systems with Acies, we measure the computation
time and storage cost of different classification models with
different datasets.

We conduct experiments on the same datasets as we used
in the previous section, but for the benefit of space we select
dimension reduction ratios of 5% and 25% as examples. As
the results shown in Table 1, different dimension reduction
ratios can affect the time consumption significantly for the
same algorithms while time consumption is important for
user experience (latency or system response time) issues.
We take the classification using CSI as an example, the
feature’s original dimension is 10,800 (showed as 100% ).
When the feature dimension is compressed to 5%, the time
consumption of classification model can be improved by 13,
6 and 8 times for kNN, SVM and SRC respectively. Similar
results can also be observed from other datasets.

5. Related Work

In this paper, we perturb the classification models to
preserve both the privacy and utility. Similar studies [11],
[12], [13], [14], [15] have been conducted in the literature.
However, the existing work is not applicable in edge com-
puting environment as they focused on cloud computing
scenarios which have significantly distinctive network ar-
chitecture and application scenarios. The state-of-the-art pri-
vacy preserving mechanisms are either data-oriented (such
as over partitioned dataset) [12], [13] or focus on specific
ML model [14], [15], which require deliberate manipulation
to make it as a fair comparison to the propose work.

The first category of the related work was the studies on
addressing the privacy leakage when releasing the classifiers.
Lin and Chen [11] proposed to control the released features
to prevent the privacy leakage. For conventional classi-
fication process with SVM classifier, all support vectors
must be kept in the classifier, which might violate privacy.
To protect the sensitive content in the classifier, a post-
processing privacy-preserving SVM classifier schema was
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Figure 3: Recognition rates on extended Yale B database with input data perturbation (Algorithm 1) and Acies, for various
feature transformations and classifiers.
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Figure 4: Classification accuracy on CSI dataset.

Figure 5: Effect of reconstruction attack on different
datasets.

used to protect the sensitive content of support vectors in
the classifiers. Many researches had also been proposed to
protect the privacy leakage of other classifiers [12], [13],
[14], [15] and they randomly perturbed the feature extraction
methods in different classifiers. Those approaches required
that all participants shared a common perturbation matrix
to vertically/horizontally partition the private data/feature,
where elements of the feature vector were spread among
participants. Those methods are specific to classifiers and
necessarily require fine-tuning from the model release party.

6. Conclusion

In this paper, we propose, Acies, a privacy-preserving
system for classification on IoTs devices under edge com-
puting environment. Instead of direct input data perturbation
in the training set, which has huge impact on the classifi-
cation accuracy, Acies is designed to perturb the feature
extraction component to address the privacy issues when
ML models are offloaded from the Cloud to edge nodes.
By comparing the naive input data perturbation method on
multiple datasets with different classification models, we can
show that the proposed method, Acies achieves significantly
better trade-off on privacy and utility preserving than naive
approach: Acies provides trusted classification services with
minimal impact on classification accuracy (2%− 5%).
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